6 research outputs found

    Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury

    Get PDF
    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T9–10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury

    High-frequency alternating current block using macro-sieve electrodes: A pilot study

    Get PDF
    Background and objective High-frequency alternating current (HFAC) can yield a rapid-acting and reversible nerve conduction block. The present study aimed to demonstrate the successful implementation of HFAC block delivery via regenerative macro-sieve electrodes (MSEs). Methods Dual-electrode assemblies in two configurations [dual macro-sieve electrode-1 (DMSE-I), DMSE-II] were fabricated from pairs of MSEs and implanted in the transected and subsequently repaired sciatic nerves of two male Lewis rats. After four months of postoperative nerve regeneration through the MSEs\u27 transit zones, the efficacy of acute HFAC block was tested for both configurations. Frequencies ranging from 10 kHz to 42 kHz, and stimulus amplitudes with peak-to-peak voltages ranging from 2 V to 20 V were tested. Evoked muscle force measurement was used to quantify the nerve conduction block. Results HFAC stimulation delivered via DMSE assemblies obtained a complete block at frequencies of 14 to 26 kHz and stimulus amplitudes of 12 to 20 V p-p. The threshold voltage for the complete block showed an approximately linear dependence on frequency. The threshold voltage for the partial conduction block was also approximately linear. For those frequencies that displayed both partial and complete block, the partial block thresholds were consistently lower. Conclusion This study provides a proof of concept that regenerative MSEs can achieve complete and reversible conduction block via HFAC stimulation of regenerated nerve tissue. A chronically interfaced DMSE assembly may thereby facilitate the inactivation of targeted nerves in cases wherein pathologic neuronal hyperactivity is involved

    Sensory percepts elicited by chronic macro-sieve electrode stimulation of the rat sciatic nerve

    Get PDF
    Objective: Intuitive control of conventional prostheses is hampered by their inability to provide the real-time tactile and proprioceptive feedback of natural sensory pathways. The macro-sieve electrode (MSE) is a candidate interface to amputees’ truncated peripheral nerves for introducing sensory feedback from external sensors to facilitate prosthetic control. Its unique geometry enables selective control of the complete nerve cross-section by current steering. Unlike previously studied interfaces that target intact nerve, the MSE’s implantation requires transection and subsequent regeneration of the target nerve. Therefore, a key determinant of the MSE’s suitability for this task is whether it can elicit sensory percepts at low current levels in the face of altered morphology and caliber distribution inherent to axon regeneration. The present in vivo study describes a combined rat sciatic nerve and behavioral model developed to answer this question.Approach: Rats learned a go/no-go detection task using auditory stimuli and then underwent surgery to implant the MSE in the sciatic nerve. After healing, they were trained with monopolar electrical stimuli with one multi-channel and eight single-channel stimulus configurations. Psychometric curves derived by the method of constant stimuli (MCS) were used to calculate 50% detection thresholds and associated psychometric slopes. Thresholds and slopes were calculated at two time points 3 weeks apart.Main Results: For the multi-channel stimulus configuration, the average current required for stimulus detection was 19.37 μA (3.87 nC) per channel. Single-channel thresholds for leads located near the nerve’s center were, on average, half those of leads located near the periphery (54.92 μA vs. 110.71 μA, or 10.98 nC vs. 22.14 nC). Longitudinally, 3 of 5 leads’ thresholds decreased or remained stable over the 3-week span. The remaining two leads’ thresholds increased by 70–74%, possibly due to scarring or device failure.Significance: This work represents an important first step in establishing the MSE’s viability as a sensory feedback interface. It further lays the groundwork for future experiments that will extend this model to the study of other devices, stimulus parameters, and task paradigms

    An Investigation of Peripheral Nerve Imaging Methods and Therapeutic Electrical Stimulation Parameters

    No full text
    Treatment of peripheral nerve injuries depends on an accurate diagnosis of their severity to inform treatment options. Current clinical practice often necessitates delayed electrodiagnostics or surgical exploration of the injury site to determine whether surgical repair is necessary. This delays patient treatment, increases the time that muscle is denervated, and may impose an unnecessary surgery if surgical repair is not ultimately required. While imaging techniques such as diffusion tensor imaging enable visualization of healthy nerve tissue, the inflammation and axonal loss present in injured nerve obfuscates diffusion signals and confounds quantification of injury severity. Diffusion basis spectrum imaging uses multiple tensors to model the anisotropic and isotropic tissue components which address these limitations to provide highly sensitive, fiber-specific signals in the presence of injury. This dissertation examines parameter maps generated by diffusion basis spectrum imaging, including fractional anisotropy, radial diffusivity, and axial diffusivity over a 12 week recovery period following a variety of rat sciatic nerve injury models to determine the evolution of these parameters in injured and regenerated nerve and inform future studies that may use these imaging parameters as outcome metrics. Further, when surgical repair is required to treat a severe peripheral nerve injury, functional recovery remains incomplete. Therapeutic electrical stimulation has been shown to promote axonal regeneration and functional recovery following peripheral nerve repair by accelerating axonal outgrowth, yet its clinical administration is limited to the intraoperative setting. Our lab has developed implantable, thin-film wireless electrical stimulators capable of delivering therapeutic electrical stimulation wirelessly to the injured nerve over a longer period. This dissertation explores the use of therapeutic electrical stimulation for up to 12 consecutive days in rat sciatic nerve injury models including cut and repair and 40 mm isograft repair to determine the optimal time course of stimulation to enhance axonal regeneration and functional recovery

    Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    No full text
    corecore